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?!?ONSTATIONARYGAS Irmw IN !mN PIPES

OF VARIABIE CROSS SECTION*

By G. Guderloy

LB91E!iiCW

Characteristic methods for nczmtationary flows have been
published only for the special ease of the isentropic flow up
until the present, although ths~ are applicable in various
places to more difficult questicms, too. The present report
derives the ohmacteristlc method for the flows which d,epend
only on the posftion coordinates and tie tt?-m. At the same time
the treatment of compression shocks is shown. To siuplify the
application mmerous oxsmples are worlcedout,

*lhTiohtstatbn5reGasstMmungen in dtien Rohren verbderliohen
Querschnitts.” Zentrale f~ wissensohaftliohes Beriohtswesen der
Luftfahrtforsohungjdes GeneraUmftzeu@neisters “(ZWB)Berlin-Adlemhof,
Forschungsberioht I&. 174.4,Bra~msohweig, oct. 22, l@&!

. .
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1. INTRODUCTION

In papers by F. Schtitz-Grunow and R. Sauerl methods have
been developed recently for completely solving the problem of
nonstationary isentropio gas flows in a pipe of constant cross
section. An expanded view of the problem is the basis for the
present report. Flows arecansidered, which likewise depend only
on the position coordinate; however, the cross section.of the tube
need no longer be constant ezxlthe entropy may vary from particle to
particle. The method of solution applied here has been discovered
almost simultaneously in several places, by Adam Schmidt, W. D&ing,
and F. Pfeiffer, among others;

!fheapplication of’the characteristicmethcd.Is possible
without a previous substantial knowledge of mathematics. Corre-
spondingly, if a derivation was desired too, one could be had
which dfd not make any special mathematical.demands on the reader.
As a model, the Busemann derivation of the eheracteristi’cmethod

for two+imensional statioq gas flows might possibly do2. It iS

actually possible to apply this derivation Immediately to the

%’chul%z+%unow$”F.: llichtstation3reeindimeasionaleGas-
bewegung. l?or~chungauf denGebiet des IngenieurwesenqBd..la’
(1942) pp. 125 to 134. Sauer, R.: Charakteristikenverfahrenf%r die
eindimensionale fnstatiotie Gasstromung, Ingenieur--Archiv,
xmvo1. (wk?) PP. w to89. Vorbereitende Untersuchungen sowie
Anwendungen ffnden sich in den Arbeften von E. Pfriem. Zur Theorie
ebener Druckwellen mit steiler Front Almstische Zeitschrift
Jahrg. 6 (1941) part 4. -Die ebene ungedtipfte Druckwelle grosser
Schwbgungswe Ite, Forschung Vol. 12 (194) pp. 51 to 64-
Reflexionsgesetze fti ebene Druckwellen groeser Schwingungsweite,
Forschung Vol. 12 (1941) pp. 244 to 21j6-Zur gegensei.tigen
Uberlagerung Ungedtipfter ebener Gasswellen ~osser Schwingungsweite,
Akustische Zeitschrift Jahrg. 7 (1942) part 2 -Zur Frage der
oberen Grenze von Geschossgeschwindigk63.tenZeitschrift f. techn.
Physik 22 (1941) pp. 255 to 260i IEine weitere Anwendung findet
sich bef G. Dsmk6hler wd A. Schmidt, Gasdynami.scheBeitrtigezur
Auswertung von Flammenversuchen in Rohrstr,ecken. Zeitschrift
fiirElektrotechnik Vol. k~ (1941) pp. 547 to 567.

%Us emann, A.: Beitra~ Gamijnemik in Hamibuch der Experimental-
physik (Wien-3ams) Bd* k, Tei2 1,*P. 421 end adjqining pages.

.
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isentropic nonstationary flow in a pipe of cmstant cross section
and from this by means of some supplementary physical concepts
succeed in getting a treatment of flows in a tube of variable cross
section; th~s is the course which had been taken, originally. h
comparison to the mathematical theory of characteristicBj however,
these consj,derationsoperate with a lack of clarity sufficient so
that the mathematical theory - for the engineer too - can be

represented as the best approach to the characteristics method.

Considerations necessary for the present ~roblem ere now
brought forward from the characteristics thsory3. As a result,
equations for the directions of the characteristics as well as
conditions which must be satisfied along the characteristics are
obtained. Proceeding frcm these relations, the next sectfons
develop the actual method of computatim. Next, the characteristics
method for the case which is familiar by now, that of isentropic
flows in a pipe of ccmstant cross section,is deduced again and
the trensfozmatims appearjng there ere used to simplify the
computation in complicated casee, too. Since this is not always
possible, the most general form of the characteristics method is
shown in a later section. After this, the formulas obtained for
the special case of an ideal gas with constant specific heat”are
simplified and the considerathm of boundary conditions e~lained.
The remajning sections deal with calculatim of compression shocks;
the known relations which connect the phase before and behinfla
compression shock witi one another are set forth in a ccmvenient-
form for the present problems and with that the calculation df a
compression shock In a flow is carried out.

The theory is illustrated with suitable examples treated in
detail.. In that regard, it saemsd advantageous to avoid deftiite
problems of technical interest, in doing so gaining the possibility
of working out examples under very general assumptions without
excessive effort. It is hoped that, nevertheless, the application
of the method to physical problems offers no additional difficulties
worth mentioning inasmuch as the earlier publications contain such
applications. The author represses his thanks to Dr. Hans Lehmann
for working out the exemplas.

‘Ccqare Courer&Hilbert. “Methoden dermathematischen P@sik II”,
p 291. Guderley follows the representation givenby H. Sei.fertat the
same institute for Gas Dynemias in lectures.

. .,



!!2, I!ASICEQUMW?NS

C(msider nonstationary, perfect gas flows in a pipe with a
oross-section that varies in space and time4 in the neighborhood
of the flow tub; that is, it is assumed that the velocity and
the phase over a cross section of the pipe may be considered as
sufficiently constant. In general, this assumption is @stif iable
only if the thickness of the tube, relative to its length, changes
slowly enough. Only for flows which have as surfaces of constant
phase parallel planes, coaxial cylinders or concentric spheres c
need this limitation be ignored, ‘Mese flows with plane, cylindric~
or spherical wave propagation are include~ as epecial cases in the
present problem. -.

!COstress the relationship to stationary two-dimensionalflows,
let the axis of the pipe be vertical, the position coordinate be y,
the time be t and plotted horizontally. b this yt-diagram tie
flows are investigated. (Compare flg. l.)

,’ Let

P pressure
t

s entropy per unit mass

P denai.%y

v velocity

F = F(yt) the cross section of the pipe, let F be given

In a region free of compression shocks, the f3& ie described by
the dependency of the density on pressure and entropy, th8 I?ewtonhn
Principle, the equation of continuity and the statement that the
entropy of a p“~ticle is preserved, as follows:

P = P(S,P) (1)

UQ+vax+g =0
p ay by

(2)

(3)

.

(4)

‘%oblems with ~ime variatims in the cross-sectional area
.

me rarej they were included, since they can be handled without
additional clifficulty.

m
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In this the derivatives o~ p should be replaced by the derivatives
of p and s, for this yurpose

(5)

is introduced. Therefore, instead of equation (3)

is obtained. ‘ .

3 ● FROM THE TEEORY or

~133&W?d to the system of equatims (2), (~a), and (4), the
femiliar question is raised from the theory of -heracteristics. In
a region of the yt-plane let the solution 6f this system of
equations and its derivations be finite throughout. On a curve C
placed in this range let the values p, v, ~d S which COZTc3Sp~d
h this solution and, therefore, th3 appropriate derivatives taken
k the direction of C be lmown. The question is asked whether the .
derivatives in other directions gay be ccxn~utedw5th the aid of the
system of differential equations, end under what conditions. To
answer this, a curvilinear coordinate system ~,~ 3s introduoad
in which a curve ~ = constant coincides with C (fig. 1). All,the
derivatives with respect to ~ along this curve ~-=.constant tie
given, .th&derivatives with respect to ~ are sought. This trans-
formation ie carried out and terms are arranged sc that the unlmown
derivatives with respect to ~ are on the left and bnly lmown
quantities are cmithe right. That is

‘!5= E(Y)*) ~

7 = n(Y,t)

a----=.2s+:;”$.
ax ag ay ,,

. .
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Wiw this form (2), (3(a)), end (4) are obtained

A linear eystem of equaticms is obtatied for the unknowns an av

and. g;
g ~,

the unknowns, themselves, are obtained by Cramer’s rule as
u~

the quotient of two determinants. The determinant in the denominator
Is the same for all unknowns. It always gives a eingle-valued
solution for the system of equations, if the determinant in the
deno!xinator3s different from O. ,Inthe other case with a detenntiant
in the denominator that vanishes, it is a necessary condition for the
existence of solutions that remain ftnite thut the detemn~nants in
the numerator also venish. 3h this case, however, the solution of
the system of equatims Is only defined over any portion of the
solution of the homogeneoussystem. In application to the system of
equations (6) signifies the following: The determinant in the
denominator is formed from the coefficients of the unlmowns-
Cmsj.dermg a fixed point on C, at which p, v
known by assumption, the coefficients deyend on & ‘~d ‘~~that

ay
is the directicm of C. If C is so diroctad that the determinant

in the denominator does not vanish anywhere, the ap etc. are
z

computable as single valued.

Of greater interest for our considerations ‘,’sthe other case,
namely, that the determinant in the denominator is zero at every
point of C. Such a curve is termed a characteristic. Because of
the assumption of finite derivatives the detemdnants in the

.

.

1
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u

numerator also vanish. Relatims are obtained thereby, ti which the
right side of (6) and, therefore, the derivatives of p, v, and s
along C appear as essential ingredients. These relations represent
the starting point of the graphical numerical method of solutim.

Sinoe the solutions of a linear systatnof equations are no
longer single valued for vanishing numerator and denominator
detemimants, the pursuit of a given solution of a ohareateristic
Is possible In various ways. These different possibilities actually
appear on changing the Initial and boundary conditions.

4. TEE IXtRECTIONS”OFTHE CHARACTERISTICS

To find the directicms for which the curve ~ = constant is a
characteristic, the determinant in the denomtiator must be set equal
to zero in the’solutions of tie systemof equations (6).

d

.

I
I

o o

This gives

From this are obtained the ccmditions

.

*

or

(7)

(8a)
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The elope‘,of&y’ curve ~ = cotitant is given by

,, ,,.
,“

.’, ,.

Qz ‘=.23
at &

From (7) and (8}, together with this, the slopes of the charac-
teristics are ., ,.-

,.”‘,

,Z#v (9)

or ,., .

Llz=v+a “ (lOa)
dt

or

IQ =TT-~
dt

(m))

The characterietics defined by (9) are path-the curves for the
individual gas particlej they might be termed life lines of tho
particles. According to (10), velocities are determined from the
slope of the other characteristics,which differ from the velocity
of the particles by *a. For stationary flows thoMach waves
correspond to these last characteristics; this designation will be
adopted. Therefore, let Mach waves of the first fsmily be tho~a
whfch spread out with the velocity v + a and Mach wayes of the
second family be assoc~,atedwith the velocity’ v . a.

5w THECONSISTENCY CCNDITICNS (.3XTEE CEKRACTEKGWICS

As shown in section 3, alcmg the characteristics,certain
conditions must be canplied with by the derivatives which result

.

.

.“. ..

m
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frcm the venishing of the determinant in the numerator. These
conditions are called consistency cmwii.tions,for p, v, and S
are subject to them, if the derivatives with respect to g are
to remain ffaite. If the right side of (6) is designated Rl, ~,

snd R in sequence, then the following is obtained for the
determL t in the numerator of the quotient for ~:

as

IR
11

‘2

! ‘3
o

(11)

This detemninant must vanish @ give the directime of the charac-
teristics. Substituting (7) gives

Rl

‘2

‘3

.

0

&
ay .

0

According to this the determinant
(8a), tit is, for a Mach wave 1

‘1

%2

‘3
o

0 t

o 0=

o
$

(U) vanishes by itself. With

.

=0

is obtained, or



In this, &
5

Is certainly different from zero, as long as v and e

are finite and grad 3 # O. As the condition for ‘&e Mach wave 1 is
obtained

The consistmcy
replaced ly -a

A condition for

conditions for the Mach waves 2 is, if a is

aoR .0-PRl+eR2 -&= j

the lifs line is obtained If
detenuinant in the numerator in th~:.>uotient

from (6) requires

0“

For the Mach wave this equation is satisfied
for the life line is -

‘3 =0

The determinsmt in the numera+iorof

however, this would not give any new

(12a)

(12b)

the vanishing of the
for as to be got

~

‘1

‘2 ‘o

‘3

by itself, the condition

?5could be Investlgatea,

consistency conditiom.

(13)

too;

.
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9
The values of RI, R2, and R3 are still to %e put in.

From (Ma),

ie obtained. The direction & along a Mach wave 1
dt

(lOa]; on that account

is valid for it. With that the consis‘tencycondition
wave 1 can be written in the form

ldD+——
ap dt

The consistency condition
substi.tuting -a for a

From (13) for a life line

is given by

for the Mach

(lka)

for a Mach wave 2 is obtained, by

(14%)

TM.s may be inte~ated immediately

s = constant (15)

Naturally this constant will differ frcm particle to particle, in
general.

1-

.
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6. FLOWS WITH CONSTANT INTROPY AND WIFORM ?IPE CROSS SECTIW

Equations (14), (15}, (9), end (10) just obtained are certainly
I.meful,fund~entally, as a starting point of a characteristics
mOthOd,- in’fact, there aremxemplesj where it Is necessary to revert
ha them (compare secticm 11); in most “cases,howevery there are
still other transformationssuitable. The direction in which to
proceed for these is obtained if an attemptis made b derive the
characteristicmethod for isentropic flows in a pipe df uniform
cross section from equations (14) snd (15) nossibly in the form
applied by Schultz-Grunow. .To emphasize the fundamental ideas, no
assumptions of any kind are made therein of the characteristics of
the flow med~um.

On account of the hypothesis of constant entropy, equation (15)
satisfies itself. In equatims (14) the right sides are omitted
since it concern= a tube of JJniformcross section. I?urther,on
account of the hypothesis of canstsnt entropy the state of the gas
is still dependemt e.sonly one variable, perhaps the prezsure,
or the temperature; the quantities appearing on tie left side
and a are accordingly functionsof this variable. It Is possible,
therefore, to consider the expression ~ as a dj.fferential.Let

Da

T temperature

i heat content (enthalpy)

s entropy

By the second mati theorem

From this, on account of the hypothesis of constent entropy,

●

✎

With that, it follows that

,
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.

(17)

is titroduced in which a. is the sonic velocity of a comparison

phase which was added to make W dtieneionless. The phese of the’
gas may be characterized by W from W = W(’). It follows”that

T = T(W) (18a)

Furth9r, it is valid that
.

P = P(T) = P(W) (18b)

a = a(T) = a(W) etc. (18C)

With the use of W equations (14) ap~ear in the form

a.
d~l+d~=() for a Mach wave 1

dW -dv=O for a Mach wave 2 ,a.

Bringing h

L .w+J_ (lga)
Z?lo

(1%)

these last relations change to a form which may %e integrated. This
gives

h = Constent for Mach wave 1 ‘ (20EL)

v . constant for Mach wave 2 ‘“ (20b)

If the magnitudes of X and u are known for a petit of the yt-diag&m,
the velocity is thereby completely d6fined as wall as the thermodynamic
phase. It is, to be erect,

w= L+jl.
!2” (21a)

v—= L-—E
a. 2,

(21b)
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end on account of equations (18)

P= P(k + u) (22a)

a= a(X + ~), (22b)

The next secti&ns explain this transformation and the application
of equations (20) to an exemple of an ideal gas whose specific heat
is,a function of temperature.

7. TI@RMODYNAMIC RELATIONS FOR AN IDEALGASWHOSE SPECIFIC

HEAT IS AFtNCTI(YN OF TlNPE3ATURE; COMPUTATION OF W

Let

“CP specific heat

Cv specific heat

R gas constant.

For an ideal gas

at constant pressure

at constant V01Ul18

X!.RT (23)
P

According to the second main theorem, if p and T are considered
as independent variables

as= @dT+~~idp-&dp
T aT T=

(24)
pT

Since ds is a perfect differential,

Accordingly, substituting p from (23), the following known fact ‘
is obtained

hi
F’”

#

m
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thak is

i = i(T)

now

therefore

C?J= CP(T)

From (24) as a result

ds = ~ dT ,R
T

and frcm this by integration

the index o characterizes a comparism

Introducing

gtves

=F-
rce=

Q
P

-Zn J?-
Po

phase.

.

15

~ (25)

(26)

. .

(24a)

.

(27a)

(28)

Considering CP(T) as known, p by (28) and P 3Y (23),

. are given as functions of T end sj the thermodynamic properties
of the medium can be calculated in principal, therefore. The



quentity a is also defined by p
is by all meens simpler if carried
According to (5)

NACA T%!No. 11?6

and p. The com~utation of a
but in the following way.

for which the entropy is to be kept constant. For cmstsnt entropy
from (24a)

dT= Fl&
T Cp P

by differentiationfrom (23) .

Q-&=g
PDT

From the last two relatimm together with the familiar relation

cP-c~=R

is obtained

.—

a(T) =,/’iRT
J CT

(29)

The relatione discovend up unttl now describe the properties
of the gas and must always be known; it makes no difference which
variation of the characteristicmethod is chosen for the calculation
‘ofthe flow. In contrast, the introduction of the functions W, h,
and w serve only as preparation for carrying out of the charac-
teristics method in the form presented in the precedtig section.
Next, to ccm-pute W. From (25) it follows.,

(%)=<%)p a

.

with (26)



Setting the last eqnation as well es (29) him (17) gives

w = ‘+= +-~:,e”., (30)

For the Zresent case, s . constant = so (28) becomes

-T11

/
g))

“.. T RT
0.

&(T)=e
?0

,.
.“ ..”

(28a)

Now tie following can be formed ,

P= P(L+ll)

These calcul~tions were cerried out numerically,for carbon
dioxi(ia. The relation between the speclfic heat and temyeratirrewas

taken from Efitteswith the aid of these values (i - io)/&

d% PY end W cm be conpu%ed from eqmtims (26), (29), (2’79)~
and (30) as functions of the temperature. (see figs. 2(a) and 2(b)..)
Figvre 3 shows a/aDJ P, and T plotted as functions of
k+~=2w.

8. THECONSTRUCTION OF TEE FLOW FIXLD

The following problem should be dealt with: Along a curve K
of the yt-diagrsm, which has at the most one potnt in cmmnon with
each characteristic, let p/p. and v/s. be given (fig. 4). The
flow shculd be constructe~ for the following times as far as it is
defined by the portion of K Riven. Therefore, it is ccmcerned

*. here with the computation of the part of the flow defined by the
initial conditions which by the same ergmnents appear everywhere.in
WI interior, too. Before the construction of th~ flow can be started

. ...- .- ..- ..-. s.. .. . .
8
~fitte,27th editTon, VO1; 1, p. w, table 5, Berlin 1941,

Wilhelm Ernst und Sohnt publishers.
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the

the

initial values p/p. and v/s. must be

variables h and u. Since the entropy
P/P. and P coincide.“With the aid of t~~

NACA TM N@. 119$

expressed in terms of

was assumed uozistant,
relaticm presented b

figure 3, between T @ld h + p Slldequati~ (22.Y), Aanau
may be ascertained without clifficulties. Fj.gmre4 shows cm the right,
the yt-dkgram, on the left, the diagram of the assumed values P/Po

and v/s. as till as them of the coqmtefl quantities X anfl u as ,
fmc%ions of ys

Proceeding from the individual points of K if the network of
Mach waves had teen brou@t in, the phase at each lattice point
wol~ldbe deterl~ined~ereby; according to (20) k ia constant along
Mach wave 1, w along Mach wave 2, and on that account, equal to
?he values at Mose poinls of K from which the Mach waves spread
out. By (213) and (22) the phase is given by k and V. TO be
able *.odraw the netvork of Mach vaves, cmly their direction are
still neetid. These are given at the lattlce points by (10);
a/a. is a function of k + v in figura 3, v/s. is computed

The direction for the portion of
uotnts is approximated as the average
directions at the lattice points.

a Mach wave between two lattice
value of the correspcmding

The cmstruction becomes especially sim@e if the Mach waves
are drawn for equidistant values of k and U. The directims
& the Mach waves appearing can be computed beforehand and possibly
prepared in the form of table I. The interval between adjacent
values of X or u was selected as 0.1, the size of the interval
depends on the accuracy desired. 121the table the upper column
headings and siqs refer to Mach wave 1, the lower to Mach wave 2.
The numbers entered in the table represent the avmage values for
(v+a)/ao and (v- a)/ao. For Mach wave 1 for which X = 0.3
and which leads frcm a yoint with K = 0.2 to a point with u = 0.1,
in the column with the heading k = 0.3 the value is to be taken
from the row u = 1.5, that is, (v + a)/ao = 1.103.

In the flow dis.gramthe values of A valid there are entered
to ths left of the Iattico point end the values of v to the
right. To detezmine, for exsmple, the position of ‘C frau the
points A and B since the phase of C is given beforehand by
1.= 1.1 and M = 0.5 the average directions of the Mach waves
(v + a)/ao = 1.422, (v - a)/ao = -0.778 c-be talmm from table I

and dravn in the yt-diagram. The auxiliery diagram on the left in
. ,,,..~.

:

1
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.

figure 4 can be used for this. mere ~~ directi~ of’a Mach ~Te
for vhich (v + e)/a. . 0.8 is drawn in. Similar diagrams can
be used as aids for the following exa:iples,too. The portions of
the Mach vave going out from K really require a special computation
since the avera~e values of A or K for thsm do,not agree, in
general, with the val~es of table 1. The small deviation was
tolerable, however.

9. FLOWS WITH CONSTANT ENTROPY IN A PIPE OF VARIABLE CROSS SECTICN

If the cross section of the Tipe ie not ccmstant, the right side
of eqtiattons(14) from which it is necessary to start out, here too,
are preserved. With that.,there is the possibility of undertaking
that integration along the Mach waves which led b equations (20).
Nevertheless, the introdacticn of L ~a y still rOLnaineuseful.
Setting

is obtained as the consistency condition :or Mach wave 1 and

b—.—=-aoM
dt

far Mach vave 2.

(32a)

(32b)

The consistency conditions in ‘he form of (%) contain at any
given time the differential of only one of the unknown q~tities
h or v while the differentials of both p and v &pTear in (14)
alrady,. This implies an appreciable tiprovement in the numerical
calculation.

?. The cmstruction of the flow rests ~ the.f’actthat equations (32)
are considered different equa,ti,ons.Let GA be the val”~ewhich a

quantity G assumes at the.petit A, ~A the difference ~. - GA
. ‘d ‘mi13Aan average value of G taken between A and B.
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kpPQing equations (32) tO

the phase at a third, C,
form

N.4CATM No. 11*

compute from two known potits Aand B
which is on the same Mach wave, in the

(33)

LJ

For tinedeterminatim of the flow Xc end Wc have to be computed
by means of thsse last equat~ons and, at the same time, the positicm
ascertained of the points sought in the yt-diagrem by the use of
equatione (10]. The calculation process might be e~lained by an
exenmle. .

The flow is considered as given along a curve of the yt-diagram
and, admittedly ly h and w (fig. 5, table II) . In addition, the
pi~e cross section must be s known func+,ionof y end t. For that
1% is only necessary 10 require +Aat F can be differentiated
vith resnect,to ~~sitf~ and .~,~~e,a premise which is always fulfilled
in practice. For this example F is taken in the form

,

.

From (31) for M

The poeitions y = O and t = O for which M goes to infinity do
not belong to this region of flow where such stigularities appear
(for emmnple at the center of spherical waves)j it is necessary to
make special investigationswhich oannot be entered into in the
present report7.

The best way to follow the calmdation is ‘bymeans of the
sywkmatia calculation in table IX. To faoil.itatecmparison with
the description the columns are nwnbered. The firwt colmn oontains
tie designation of the point whioh i~ to be computed, the second
column gives the known point whioh, in aamon with the point to be
oomputed, is on Mach wave 1. Column 3 contains the corresponding

“(CompareG. Guder2ey. “Starke kugelige oder zylindrische
Verdichhngsst&se in der N&he des Kugelmittelpunlctesoder der
Zylinderacm e,” Luftfahrtforschung,Bd. 19 (1942),pp.302-312. T&%
concerns itself with a camyldcated special ctaseof suoh a singularity,

,

.



NACA TM N5 ● 11!% 21

point for Mach “wave2. The first five rows reproduce the initial
values 8.swell as some further values that hold at the given points
which are necessary fol’a later calculation. The calculation of e
new point is carried out in ths form of en iteration method; as
en exam@e the point 4 will he ewlained. Next, the v~~les for
X4 and V4 ara estimated. (colwms 4 and 5) c In order not to
use too favoralle an estimate, it is assumed that X4 = L1

and U4 = Wp. The quantity (k + P)4 is detimnined for these
).

()magnitudes an& fron that, with the aid of ffgure 3 -% and,

()

ao,i’4
farther on v

()
(columns 6 and 8). With these values =1

r’, .,0/4

()

a. /4

and u are computed (colw~s 9 and IQ}’ NOW tie average

a. 4

directions for Mach waves 1 and 2
(+)ti4=d(y)&k

. ere formed (columns 14 and 19) and the Mach &ves are plotted &
the yt-diagram. From this Y4 and aot4” (colunns M and.13) are
obtained. With theso values M4 (coluum I.1)and the average

. values %.4 and %.4 (GOhUIS 15 and 20) a ccraputed. ‘h

continue fo~’Mach wa:es’1 and 2 Aaot4,1 = aot4 - ao~.

and Aaot4,2 = aot4 - aot2 have to be computed (columns I-6 and 21)

and can be substituted in equations (33). The qumtities ~4,1

and & ~ as well as X4 md V4 (columns 17, 18, 22, 23) are
kob~tie { If the values X and w calculated in this manner do

no% figreewell-enough ti.ththe original estimate, the calculation
must be repeated in which X md w duet c~c~a~d aPPear ~
place of the earlier estimates. Ns3mrally, the Mach waves mmt be
plotted over again, too, in the yt-tiagram for this. These figures
anly show the final form at any instant. For that reason all tie
steps in the iteration method are put in the tibles. A good view
of the results of the calculation as well as insight into the
estimates to be carried out ly the iteraticm method is obtained, if
the flow is followed simtitaneously in a Xv-diagrm, as well as the
yt-diagran (fig. 5, right]. There the k-axis was,selacted
slanting up to the right at 450 and the w-axis downward at 45°. With
a suitable vertical scale h - I-$and therefore ~/a., 58 obtained
i?mne~iatelyon a horizontal scale k+~ or W andwithtieuee
of unequal distributions a/a. end P and, for isen~mopic flows

D/p. too. The X- end u-axes were inclined 45° to obtain the

quantities of physical interest v/s.Y a/ao9 etc, in a coordtiate

system with the conventional arrangement.
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●

✎

10. FLOW OF AN IDEAL GAS’WITH I!NTROPYDXWERENCES

The introduction of X and. p with the object of obtaining
equaticms in only me unknown, at any time, with the iterati~
metho’dfor the determination of..the flow was possible up until now

because the expression ~ with ccmstant entroyy might have been
pa

coneidered as the differential of a function W independently of
the characbristics of the incident gas. Naturally, that is no
longer possible with variable entropy. The computation of the
flow must, in general, therefore, return.to (14). The ideal gases
constitute an exception. Here, as recognized in (30), the fmction

W which essentially agreea with
J

~ for constant entropy,
pa

depends on the temperature alone, and no linger on the entropy.

If the expression @ is considered, therefore, in the case of
pa

.

variahla entropy as dependent on the variables T and s the
effect of change in entropy is separated, then the rest’can be
written here as a’differential and 1. and. p can be introduced as

.

previously. Thechange in the entropy along the Mach waves must
naturally be regarded separately. This is ~ossib13 without especial
difficulties sinco the entropy is constant along the life lines. The
transformationsare carried through in the following manner. From
the second law

1 dpTds=&i --
0

:.akinginto account (2~and (29)

Introducin~ W, k, and u as before, the consistency conditions
are ob+ained in the form

m
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The differential quotients d.s/dt formed along the Mach waves
interfere: The”following transformations are possible. Analogous
to the flow function of two-di?nensionalstationary flows, a
function * is introduced, * is constant along the life’lines.
This can be achieved by requiring that

w -JLJLV
.%= FOPO

A1.cmga life line ~ . v therefore

(3%)

(35b)

(36)

,

1

The Fhysical i3i@ficance of * can be reco~ized as follow:
Let C (fig. 6) be the intirsection point of the life line’throu@
A with the line t = constant through B . To begin with, the path
of integration is along the life line frm A to C and, from
there, out along the line t = constant to B ● Along tie ~ife
line AC, * is constsnt

,
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.

along the section CB, dt is equal to zero, accordingly

From this. ~.tis evident that ~ represents the mass which is
enclosed
is zero.

The
with the

~ekveen the particles at an-instant in time for which $

fact that s is constant along a life line can ke written
use of V in the form

for which $& is to be taken, Just as

the Mach wave considered.

From (35) and (10)

for Mach wave 1

for Mach wave 2

(38)

a

.

&3/dt previously, along

Substituting these W equations (34), allowing for (23), (28), and

(29) replacing ~ according t,o (2’?%) by .}fi and po/po

CT

W #ao. * “yields the following consistmcy conditions:
?0

,
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For Mach I’ave1 .

.

[(LlxaQ& )
Cv

—= v_mF+ 1 ahm .oFpdfi
dt ‘>

——
a. a. Jy a. dt c F.

1
@

-. PO

For Mach wave 2

L

Here P ia a function

a function of y end

Of k + ~ (fig. 3), F/F. iS kllOWn
t. From (38) and (2D) it fouows

3’(= n-(1-f)

and frcxnthis

(W)-= constant for a life ltie ~

For the sake of compactness, introductig

Then (39) goes over 3n+m the fovn

(ix—: ao(-M +N’j , ‘ (kla) for Mach ‘wave1
dt

~= ao(-M -N) (41b) for Mach wave 2

(39~)

(3%)

tabe

that

(40)

Equaticms (40) end (41} supplant the.previous consistency conditions
. (15) ma (14).
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Before starting
arises here, too, of

the characteristic
Ccm-puting x end

from the initial values. Almw a curve

NACA TM NO. 11X

constructim, the problem
P, end now ~ besides,

K of the yt-diagram let
the velocity be given by v/ao~ the phase of the gai %Y ~/p.

end T. From’ T with the aid of figure 3 k + v is obtained.,
from v/so, X - p; with this L end w are known. Sfnce p/p.

are given, snd P as a function of T is to be gathered frcm
figure 2, n is obtained tmmedtately from (28). As a result of
-plotting m against the values of y from the curve K and

differentiating & is obtalneii* From (36) and.(35) together with
dy

(23) ~ for the curve k may ‘becomputed for the curve K end,

finally; with that

is determined. In many casee *hese coruputatlonsare supetiluous;
if entrony differences arise frm compression shocks, the

determination of ~ X and u includes their calculatim. The
n.

way the co~putation of flcm’haf3to be carried out is shown in
figure 7 and table III with points 4, 5, 6 as exsmples. The
related Xw-diagrem is right center. (The points included, in
addition, in the talle and the figures relate to a later section.)

Along the curve K (points 1-3) k, !-L,and &are assumedas
d~

known, in the auxiliary diagram ‘X hae been reproduced as a
@

function of’ y. The computation of anew point - take point 4 as
en example - beg@, here too, with an esttite of h and y
(table 111, colunms 4 and 5). After that, as before, the following

of 4 Is indicated h the yt-diagram and y4 and aot4 in the

table (columns 11 and 12) assumed.. The detenntiatton of 5$ with

the aid of the life lines enters in as something new. It should.be
sufficient for this to draw h a multitude of life ltiea, simultaneous
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the construction of the Mach waves and going back over,these’

to learn the desired value K from the a-uxiliarydiagram. The
d~

Xv-dia~em is useful for a quick determination of the direction of
the life lines. The position of the intersection poti@ of the
life lines with the Mach waves @ be estima%d there withcn~t
difficulty, and then the average velocity lesrned. (Cmnpare points 14
and 15 h the yt- snd in the k~L-diagram.) After ~ has bean found

d~
and; in addition, ?? has been learned from diagram 3 (columns 13
end 14), M4 anil N4 as well as (-M - N)4 anii (-M + N)4 may

he COVDULed (columns 17-18)~ the average values (-M - J@ti 4 md

(-M + N).a 4 for the Mach waves be”formed (columns 20 and 35) and

vith ‘“hea~d of A aot (colmns 21 and 26) from equations (41)

cmqmte AX and & md. ultimatel.vwith that k and u.
(Colums 22, 23, 27, and
had, the computation v-as

11. TEE GENERALIZED

An outllne shall be

28. ) ~eri the origin~ estti’tes were too
repeated.

FORM OF TEZ CHARACTERISTICSMETHOD

given of how to proceed if the simplifications
given above are no longer possible or if the fl~w is eo sma~l that
the prepsred computations as given at the end of section 7 do not pay.
As an example, let the compub.ticm of the point 4 be carried through
frcm the points 1 end 2 of figure 7.(See fig. 8~ The q~titfes

P1/Po = 1.44; ml.= 1.2; vl/ao = 0.425

3?2/P. = 1.866; Yr2= 1.332; VP/~. = 0.400

correspond to the initial values assumed there. For the medium to
be investigated
W this case P
and figure 2 ~b),
&nd (29) . Hunce

p and & must be given as fvnctions of p and n .
is obtained, f~rst of all, from (29) and from that
T. ~~n p/p. 8nd ala. are obtained wtth (23)

1

~1/a.= 1.0!21; P1/Po
(

T+ a’1= lc375; ~ ~ = IJ+46
\ o ,.:~

(-

\~
%/a. = 1 :037; P2/P. = I*71O; Q / = 0.637

a
o. ‘2
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besides

‘1 = 1.747; ~ = 1*442

can be ccmputed. Here, too, an estima+~ is made in computing a new
point. For example

*1 + fia
P4/T. = l?l/Po= 1.44; ~4/ao = vl/ao = O .425j fi4= ~- = 1.266

(/(with this Ph . ph p. fi~= 1.137 is obtained, whence

T~ =,282.5

Continuing further

‘%lao
= 1.014; 04/00 = 19390; (V4 + %jJo = 1.439

(v4-a ao=-o.~gj (vi- a)m4ao=l.l+43; (V-a)ti4/&=-O.6134)/ > I Y

With that the position of poimt 4 in the yt-diagram may be found,
giving

Y4 = 1.446; aOt4 =’1.258; A(aot)4,1 = O=@@; A(aot)4,2 = 0@2

and, after further calculation

M4 = 1.403

The average values exe found to be

(/)P 00 ~ /a. ~,4 = 1.0175;= 1.383; , a
., ml?4 ‘\ )

(/ \ = 1s750;
0 09)&,4 (/)

? ao m2,4
= 1.026;

.

%lil,4 = 1.439

Mti,4 = 1,423

,
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Considering equaticms (14) as difference equations thenv

P. 0.,.
()

– -,ti,,(?)ti,f$ -$- ‘($ -$= -ao+otk - ao%)%2,,poao \ o

P CT
Replacing & by +02 from (29) eZMI(23) gives

PO ??0

P~
—
t)
-o

+&%l,4@4-’o%) “

‘2-— [a t
ac )

- M,&,4{ o 4 - ‘Ota

7For ~eal gases the first term of the left side of (14) may

be writt.en

separately.
● cases, this

To per’ni+the
simplification

o/00 doee not have to be

procedure to be applicable
iEInot used here.

computid

in more general
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Putting h numerical values gives as a result
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0s%7 P4/po + v4/ao = 1.1430

094~4 P4/Po - v4klo = o*3?u

T4/Po = 1.470

v /a
40

= 0.342

From the velocity computed above v4/ao end the velocity at

a point 4‘, estimated for the present, of’the cmecting line 1.2,
the average direction of the life line yassing through 4 is obtained-
ly an approximationmethod.. If thie is proceeding from 4 backwards,
the more accurate position of 4’ is obtatied. By titerpolation

between 3.&d 2 ti4’= 3t4= 1.243 is obtained. Since the values

Ph V4
‘4

do not agree sufficiently well yet with the originally
~q

estimated values, the computation must be repeated with the mamitudes

P4ha = 1.478;

X2.SIMPIJDTCATICW FCJRIDEAL

v /a
40

= 0.3383; Yt4= 1.243

CASESWITHCCNSTANT Sl?ECIFICKEATS

Generally the flowing medium is an ideal gas with cmstant
specific heat or at least can be considered as such, as an approxi-
mation. In such a case appreciable simplifications are possible.
Let

k= Cp/cv

then

Cp=~R; Cv
k -1

L

ic-i- R

.

.

.

.
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From equations (27a), (29),.and (30)

Js_

With this, it follows that

and from that

(?.._2_ &-1’\+L
k - 1 ,ao ) %

a’—=
a.

1 -!-F+.(k + ~)

consequently,

The directicms of the
in the form

4!-. –1

characteristics ere obtaj.ned

(k2d)

(42a}

(42b)

(42C)

from (9) and (10)

g J-U=ao _
2

for the life lines

.,
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The consistency conditions for the Mach waves rema~
the form (40) and (41). M end N are expressed as

The directions

NACA ~ No. 11$%

unchanged in
fOllows, now,

of ‘the characteristicsmay now be found very
conveniently graphically. A const~’uction which is suitable if-the
simultaneous treatment OY the flow in a Ap-diagram is avoided Is
the contribution of Adam Schmidt.(See fig.9.)For the determinaticm
of the direction dy/dt for a life line, two vertical scales at a

distance of 1 apart are used with h
E ‘lOtteamtieri@t ‘e “

@J& L on the ~ef~ one as a~o~e.
2

A life line for a phase which

is ~iven by X and p has the direction of the connecting line
of the points concerned on the function scales. Similarly, there

are scales to use for a Mach wave 1, which gi~e
+

‘kU on the

left and 1 + ‘~l-k on the right. For Mach wave 2 k~l:,

has been plotted on the left and -~ + 3 ~ YL ~ the ~~@~,o ln

figure 9, the direction of Mach waves 1 and the life line is given
for h = 1.1 and v = 0.6.

If the phases in the course of the construction of a Xp-diagram
we fnllowed u-p,the fcllowing ~ethodtis suitable (fig* 10, rigkt) ●

A vertical line Is sent through the O-petit of the k~-ayatem end
the poles ~1~ ~%? and PL are determined, where PL is on a

level wi+h the origin of the 1~-systeznand ~~ away from it. 23

and P2 are directly below end above PL, respectively, end
.-,

likewha the di~tance \i2 frm it. To f~~d tinedirection of the
characteristicsfor a“given phase, a horizontal ray and two raye

slating upward and downward.at an angle arc ten ~~ are dram.
2

These intersect the vertical line through the origin of the ~~-system
at the pointm QIZ Q@ and ~. The cmnecting lines PIQ1,

~z~> ~d %% are the directions of Mach wavee 1 and.2 and the

life line. in figure 10 the construction for point 4 is carried out.

.
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This constmction is especially convenient with a triangle having

allangle arc ten ‘=&.
2

Figure 10 and table 4 gfve m example @

an appliOatiO~ for the same initial values as in figure 7 an& withI
Opicv = constant = 1.4.

13.

If the flowing gas

BOUNDARY CCNDITICNS

column ts not infinite. the variatlm of
the flow is determ~=d by +he phase at the st&t, in addition,
also by conditions at its.boundaries. For exeprple,a gas cam be
closed.off by a yiston or titgidwall, flow out into a space with
a given Tressure, or be sucked out of the same. Generally, the
boundary ccmditions may be formulated so that relations between the
pheme magnitudes of the gas and its “velocityalong a curve of the
yt-diagra.m’are prescribed. The nwnber of conditions tiich are -
neeiiedfw the boundary curve corresponds to the number of charac-
terlstics which run out fro.uthere into the interior of the flow.
For example, the gas flows out of the end of the piTe into a space
with constant jywssure, ti.th v < a, then the line y . constant
is the curve for the pipe for which tie boundary conditicms are
given. A family of Mach waves spreads out from ft inward, while tb
other family end the life lines reach this curve, approaching it
from within. Ta this case the condition can be ~~escribed that
the pressure in the exit sectim be equal to the outsids pressure.

. If the gas is sucked in frcm outside, Mach waves of the cme family
proceed from the cru’veof the boun&ury ccditlcms as well as the
life lties. Accordingly, two conditions must be given. The one
states that the entropy of the entering particle is the sane as
the entropy in the outer sp=ce, as a second it would be required
perhaps that the phase of the gas in the entrmce secticm be related
to th~ phase in the outer space through Bernoulli1s oquaticns.
(An ixcactformulation is difficult, stice the flow at this location
is no longer one-dimensional..) L= the characteristics of all three
families of a given CWV6 lead out into the interior of We region
to ~e computed, there are three conditions to prescrtbe; this is
the tiitial value problem already treated. me other extr~me, that
at the boundary of the region of interest, generally, no cdiiticm
can be fulfilled)is physically ccmceivable, too. For example, if a

. gas with v> a flows in a space at constant pressure, generally no
characteristic goes inward from the outflow sectioq. ,,

.
d

%ompere Schultz-Grmow, 10C. cit.

. .
.,’

,.
. -.

,., ,’
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Actually here - disregarding lIoundaqy.conditions whioh foroe
ccmqn?emxlonshook~ - no effeot on the flow vdriation in the interior
is possible frcm outside. .,

The treatment of lmunda-~ conditions is e~lained with two
exsmples which are connected with the flow in fi~re 7. The O*
putatzionis entered in table 111, ae far as possible. The first
exeznpleinoludes yoints 7 to 9 and, admittedly, it has been assumed
that the gas column fs bounded by a piatonwhoae life line is
re~resented in the y%tiagram as the aurve 3, 7, 9. (Whether it is
practicable to realize such a piston in a tube of variable cross
section Is unimportant for car.~ing out the octnputation.)The
m-.dia~am referred to isin fi~-e 7, upyer right. TO begin
with, an estimate is Ud,e of the yhme at 7 ~~hichhas been chosen

‘7 = ‘3 = 0’800’ ~7 = ~3 = 0“050” ‘ince ‘he ~im 3“7 ‘s ‘e ‘fe

of a particle,
()

~

‘()
is already known and is equal to * ,

d+7 d$ 3

With this the values in oolumns 6-10 and 19 are calculated. As a
result of drawing in the Mach wave 5,7, y7 and aot7 (columrm 11

and.12) are obtained and besides v7/ao from the cll.rectilonof the

life line at point 7 which has been reaohed. (This oylnti.tyis
found in column 8 under the value computed frcm the initial estimates.)
.Nowthe g+uantittesin Golums 14 to 18 and.20 to 23 may be .ccmputed,
the value v7/ao obtained from the boundary conditions will be used,
With that X7 is already known. The quantity p7 is obtained from

the relation’

_=X-&v .—
ao 2

Inserting numbers

0.323 =1/2. .(0,417-P7); P7 =-0.229.

Since the fii~st eatkte was too poor, the computation
repeated.

must “be

Point 8 is oomputed from 6 and 7 by the method explained
in seotion9. From 8, point 9 is ohtalned in the way just described.

This method of oalcula.tionis useful for any laws of motion
of the pipe; a special argument is necessary only it a discontinui~
appears. The di~contizmity in the velouity is to he considered
attained on transition of the bounda~
variation at very large aooeleration.

froima oontinucn.wvelocity
In the yt-diagram that meems

.

,

m
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that the life line of the pistcn which has a bend at the instant
of the velocity discontinuity is rounded off immediately. Then the
flow may be drawn accurately just as previously. To obtain
cufficient accuracy, enough points must be taken on the rounding off
so that the velocity of the piston does not chenge excessively from
point ‘topoint, and at each point a Mach wave of the.first family
may converge and a Mach wave of the second family may diverge fram
there. First of all X must be cuaputed for me converging Mach
wave and then from A and the Velocity at the incident point -I.I
detimined for each Mach wave. If the rounding off becomes smalltir
end smaller, these yoints cm the rounding off draw closer and
closer. With that the values of X. approach a single valuej which
may be ‘ccin&tedfrom the field before tie bend. The Much waves 2
spread out in the shape of a fan from the bend and the fan includes
all valuOs of u which lie between the values of w for the
velocity before and after the velocity discontinui~. , ~

For the second example, there is at the positiqn y = yl an

open piye end, through which gas is sucked in fran outside and”for
which two conditions must be specified along the boundary-condition
curve. The curve is the curve 1, 10, 13 in figure 7. h the outer
space let m = xl; for the entertig particle therefore M . 0.

dti.”
This is bne boundary condition. As the second boundary,condition
there is the requirement that the phase In we inflow section be ‘
related.to the
This condition

phase in tie outer space by the Bernoulli equation.
may be satisfied, aEeady, at point 1, accordingly

or also

TO determhe these constants, from figure 3 the temperature Tl is

taken for (} ~ + from f’igyzre2(a) for’ T~,’(il - io)/~2.

Then .’,’
,’

. . .

h-io+l

2
‘)

pl‘.2
— =o*&J ““ “

a. -z~ a. “
. .
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Since (i - qJ /ao2 is a function of,’~ and.,therefore, of’ X + p,

~= ‘~ this boundary condition c~ be ‘plottedas the‘curve K
a. ‘2 . .
in the ~V-dia@%n-O (ftg. 7j lower right)., At beat, the caputiti~
of point 10 begins anew with an estimate ‘for ~..and v so that
the boundary conditions are already satis.fi6d ~columns 4 and 5).
With this, the qu~titips ti columns 6, ‘~,8, 10,.and 24 are computed
and Mach wave 2 drawn””@ with that. The quantitY ao*10 ~~.-
obtained in cM%, ’12,the -values YIO =,,yl,,and :M, “=o ● (C,olumns12

. ,’ ‘a*
and 13 are given .befor’&&nd.) Now the qusn”tities”in “cblks 14 to 18
can be obtained.

,.. . .

To detemnine, with this, the quen~ity (,TM‘,~.N.) in column 25
it is to be noted that (-M + N) for the particie ori,gindllyh
the pi~e has the “value,perhaps,,at point k E@ d,h~ges dts’
continuously for the particle recently suck6d into the quantity
(-M+ ~)lO. ~ ‘, . ““ .,

On that account the life lfne is drawh, which separated the
particles in the interior originally from “those,particles flowing
in from outside. This intersects!Mach wave 47, 10 at point 11.
Then the fOllOwingiti’’o%ta~ed’(coIwm’25) “’.

..... .

t A(aot)ll ,10 1(-M + N)10

The quantities in columns 26, 27, and 28 may be computed‘now. ~s a
result of lnspecting the curve of the boundary condition in the
hp-diagrem with the value of M fetid, k is obtained (COI~ 23).
The computatim is repeated with the values found in this way.

From points 6 and 10, point 12 is obtained @ the ~er
described.in sectim 9. In comedticm, with that the difficulty just
described appears again fn f-ding the average’value for (-M + N) c
FrOm 12 ma the botmti~ conditicm”;petit 13 w be computed bY
the method just presented,

The k~-diagram~ of the two last emmples were kept sewate
from the kw-diagram drawn for points I-6 for the sake of clarity.

.

.

1
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If the vsrious figures are visualized em being joined - the upper
fi~am” connected to “tie ~d~e me at tie l~e ~, 5, 3, the mime
one”with the lower one at the line 1, 4, 6- it is recognized that
the plane is covered with several sheets which are “connectedalong
the figures of tho characteristics. There is such a supe~osition,
already, in the lowm k~-diegram; there ere to be ti@ned inclosed
the quadrilateral 10, 4, 6, 12 along 10, 4, the trimgle 1, 4, 10,
along 10, 12 the triangj.e10, 3, 12.

In eihlitionto the boundary conditions, transitional.conditions
can also ap~ear jn the interior of the flow. k the example just
discussed flustthat would have been the case, if in the outer
space fi were different from til. At the location of such a

tiscontirmfty for n agreement of pressure and velocity mmt be
required..
beyond the

14 ●

‘I!ogo into s~ch questi~ with greater detafi lies
scope of this report.

TRANSITIONAL CONDITIONS AT COMPRESSION SECICES

The flow in a given part of’the yt-plane is defined by the
initial end boundary condition and is calculable by the methods
derived up until now. It is possible that it might happen during
the constructim that regions of the yt-plane are covered with
yhase quantities several times. This is the sign for the appmr-
ance of compression shocks. The entropy is no linger copstent
after th~ passage of a compression shock. On that account the
computation of oomprassion shocks simultaneously includes the

determinatim of the function s($) or K($) , too, for the
d$

region of the yt-plane behind the compression shock.

Tor the mathematic~ treatment, a compresshn shock iS to be
considered a curve along which two flows collids, which are rcla~ed
to one another and to the direction of this curve by @ansitlon -
conditions. It will be themproblem of this section to derive
these (known of themselves)” transition conditions in a convenient
form for the present purpose.

Proceeding from a stationary compression shock, that is from
a compression shock wiose front is et rest relative to the coordinate
system.selected, let the index I designate the yhese before the—..

‘Compare Ackeret for inst,c.nco. Beitrag Gaslynamik in Eandbuch
der,Physik, ~. ~1, p. 324 and following pages, Serlin 1927.

..’
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shock, the index II the phase after the shock. The additicmal
index s might point out that this concerns the calcul~tion of
a stationary shock. Then the momentum and the energ theorems
as well as the equation of continuity are written in the form

‘Is + ‘IBV1S2 = ‘IIs + ‘IIsvIIs2

‘ISVIS = ‘IISV1lG

(43b)

(43C)

Furtherfnore,the characteristics of +he gas concerned must be known,
possibly in the form

P = P(f, 0) (43d.)

If the quantities in advance of the shock ‘Is) OIEV ‘d ‘Is ‘e

laumq then the compression shock is therewith calculable. Actually
all three quantities en’txmfnto the Seneral g~.slaws, too,”as
parameters. In order to carry out the canputition practically, in
such a case, pll~ from (43c) =d :lls from (43b) have to %e expressed

as f~c-tfons of vI1s and the known Quantities and then substituted

in (43a). With that, an accomt of (4-3d), plzs, too, is a

functicm of vll~ end the known qujzntitiesin advance of the shock.

In this manner an equatiac for
‘IIs

alone is obtained which must

be solved numerically in a suitable manner. For an ideal gas for
which c is not constant, equatims (43) trensfom with the aid

P
Of (23, as fOllOwe:

‘1s P~e—RT1~ + —

‘IIs %
‘1s2 = ‘TIIS + ‘IIS2

% 2= i(T1ls) +&s2f(TIs) + 2 Is

.

.

(44a) <

(44b)
.

%s
‘Is —

‘IIs
= ‘II@

(44C) ‘
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Since ol~ appears here only in the combination p~1*/P1~ only

‘Is ad ‘Is
still remain as @rameters upm which the phases

behind the shock depend. To calculate the shock curves numerically,
it is useful, first to regard Trs end T’=s as parameters and

determine vTs from this subsequently. The canputation process is
—.

the following: ~ran (kb) m~ (44C)

RT1
%1 ~ ~

‘+ ’18 = ~11~
‘Is

11s .“

As a result of squaring this
,. , .

R2T1B2 ‘2 2

~ + 2RTIB + ‘1s2 = ‘~ + ‘T~Is
‘IIs

+ ‘11s2

fitrodu.cing

gives

frcm (44b).

Putting this

obtained as

..

fii = iT1~ - i~s

hIs2 = ‘1s2 - w

in [4m), the dssired equation for

(45b]

a---

4 ‘ ~i - ~ ~~s - T1s–”

L ( )1+‘1s2 I
‘-4Ai2 + 41?Ai(T

‘Is \IIs -
-1 i_

(
-Rp T11s2 - T1~2

,)]
-2R%1s2Ai = O

(46)

2 is‘Is

)
‘Is

If vls is determined, then

turn with the aid of (46) end

P118/P1s =

‘IIs ~d p~s/’p1s

(44c) ; finally

P118/P18 Tm#ls

,arecomputed in,.
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,
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For en Ideal gas @th constant
formations may be under@ken.

i
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specific heats, tie following ~~-
According to the familiar relations

k
‘m”k

and

*,&?= KRT

~quations (45a) and (kAh) are tiitten in the form

2 2 2
2 + v11~2

r L ‘Is + ‘Ie2 ‘ ~ aIIs

or

(47a)

(47b)

By this, hIe /aIs ‘d ‘11s/%s ~d, with that~ the o~er q~tlt ies~

too, depend on the parameter vX6/516 alone.

To compute v116/a16, &Is/aIs}2 is eliminated:

.

.
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Tilesolution of ‘thisequation is
lorne in mind that on account of the
represented by

fcund, immediately, if it is
form of (47) a solutton is

41

qr*/als = ‘Is /aIs
then

~= 2 /’As +k-lvIs

( )

—. —.

‘Is ‘“+ 1 ‘Is 2 9s

Using this, ‘&e following is olltained.from (47b)

and

The
end

Pns/P1s =(&/Qt$JvllJ

p~rs /“pls = (c’IIs/%J@ns/%)

‘)=vls/als als/vns ans/~~ 2

\
change of entropy is of interest,
(28), these expressions resvlt

as well; with the aid of (27)

‘IIs - ‘sls= 2k
R

~-in& +2nz-21n a
k-1 aIs aIs aIs a16

,.

2“ aIIs.—l.n — eZnti+~n_— ‘IIs
k-l %s are aIs
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2

*IXS
*FI

()

_ . kg h .—a18

=1s %s *IB ‘IIB

Arbitrary compression shocks result from me staticmary compression
shocks ~ust calculated because a velocity is supertiposed. In doing
so, the thermcdyrmdc phase quantities before md after the shock
for which accordingly the index s csu be omitted are retained ml
moreover the velocity differences. Since the phase in advance of
the shock is already given in the construction of flows, before the
shock iS C~PUted, the relative velocities with respect to the phas3
in advance or the shock are formed. Let

u absolute velooity of shook front

Au relative veloaity of shook front with respeat to martioles
in advance of-shook

Then

Au ‘VIS

()

- 2 . ~.~
—=—; Av
‘I aI 11,1 = ‘II - ‘I = k+].

aI ‘Is e

The signs appeerfng in this
compression shock in a gas which

are not astonishing. A stationary
moves in the positive directicm

propagates itself in a -iiegativedirection relative to the material
ahead of the shock, and in so doing, produces a change in velocity
in the direction of its propagation velocity, that is, in the
negative direction, too. Naturally, compression shocks, which travel
in the po~itive direction in the inaterialat rest are also poseible,
the si~s of the volocittes have to be changed for these. The
thermodynamic phase quantities of this are not touched,upon. Corre-
sponding to the distinction which had been met in Mach waves, these
last compression shocks are designated compression shocks of the
first type, those which propagate in the negative direction as
compression shocks of the s,econdtype. In figure 11 the pressure
ratio, for an ideal gas with k = 1.405 the propagation velocity of
the compression shock and the chsnge in entropy (smpressodby

fi&~} has loen preeented as a function of the velocity change

‘VII,1●

For compression shocks of the first type Au and AV1ll

are to be taken with positive sign, for compression shocks of the’

,
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second type with negatfve sign. The ftmdamntal numerical values
appeer in table V. Such a U&gram would ha~e to be used to ap@y
the ch~acteristics method in the form given in section 13.in the
computation of compression shocks. How are these relations for the
compression shock exyressed in terms of k ~d U? If tWO
compression shacks which only arise separately from superposition
of a valocity - they are distinguished hy the indexes u and ~ -
are represented in a Ly-disgyam, that is, if the phases ~n ad.mnce

M ‘he ‘hock ‘I,a; ~LI,a; ‘1P; NIP ~d ‘e phases ‘ehind ‘he

shock are plotted, then here, too, the expression must be arrived
at that the thermodyndnic phases in advance of and behind the
shock, as well as the velocity differences for both compression
shocks sre the same. Accordingly,

(
..

x,
II,a )( )( )- ‘I~,a) - ~kI,a’- ‘T,a = ‘11,~ - ‘IT,~ - ‘1~ - ‘IP

By subtraction of the first two “equatims

Rearren~tig terry in the thirflequation gives
:, ...

(
h -h ){

)(II,a I,a ,-\pII,a - ‘I,ct
=x

11P )
- ‘q;) - ~~1~ - ‘1~

Frcm the last two equations it follows that
,.
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that 1s, the chsnges in X and ‘p in a compreseicn shock are main-
tained in the superposition of a velocity. Accordingly, the shocks
are designated by

end

%1,1

The following relaticms hold for
heats, according to (42)

.’

,,

‘XII-XI ,

= IJ1l- VI

ideal gases with constsnt syecific

)5+_.—‘II ‘I.4s!
!2

=1 -X (%1

II,I II I=m~~-so)” ao 80

.3/–2 ~-

a
!(

ok-l
aI

—.

)11+-”
aI

2
b

()

%1 %1

II,I=pII-VI=k-l ~-%,

r(
% 2 %1=-— —-
a k-l
0 L.

al
\

‘II ‘I ,-—--
a a.
0

al/a. Is to be computed from X1 and VI by (42c).

in curved tmackets
-.?

1( aII
a-= * —

aI
.—

)-1+
)-1-

’11 “ ‘I
I

ar J

1‘II - ‘I

aI

For the
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are introduced.

..,.

These quant~ties, as well as &/aI} ‘iII/fiI~

45

end pll/pl demend only on vls/aT according to relations “

Trev?.ouslydeveloped. They sre plotted in figures l$2(a)and 12(b),
and. admittedly: the upper designations refer to tQe compressim ‘
shocks of the first type, and the lower designations to compression
shocks of the second type. Figure 12(b) represents an increased
section of figure 12(5), vith the.appropriate numerical.values in
table V.

The following example shove a first application of this diagram.
In a pipe of constent cross section ‘Acre is a quiescent ge.sof
constant entropy and constant pressure, Khe sonic velocity is taken
tobe ~=ao. Suddenly, a piston is driven into the pipe at a

uniform sped of 0.5ao. What Is the ensuing flow like? Figure 13

shows the yt-diagrem. The starting point of the pi~ton moticm lies
at the origin of the coordinate system. The life line of tha pietcm
iS shown with hatching. A canpression shock forms in front of the
pis~mj which imparts the velocity of the pistun to ti13particles, so
that the particlae behind the compression “shockmove’with constant
velocity. Corresponding to the phase in front of the compression-.
shock iS

X1=O; pl,=o

The velocity behind the compression shock is

‘II
= 0.5a.

therefore,“

L
II ‘VII=l

Frm this, on account of X1 = O and VI = O ,

AL
11,~

-@ =1
11,1

Since al/ao = 1 this gives



As a result of causing this.straight line in the &&--d.iagram
(fIg. ).2(b)) to intersect the shock curve, the following is obtained:

is =1.022; ~- = ().022; $ = 1.346; fill/flI

‘II
= 1s022;

‘II
= 00022; u =

= 0,970

1.346

‘rm ‘II and VII, P is computed by (42d), from this by (28)

The goal wouldbe reached scnnewhatquicker in this by application of
diagram 11.

15. PRELIMINARY ARGUMZNTS IN THE DETERMINATION CO?A COMPRESSION

SHOCK IN THEFLOWFIELD . .

It is the ob(lectof this section to show first of all 3Y what
data a compression shock in a flow is detezudned, and, secondly, to
give a method.ty which the computation of such a compression ~hock is
possille.

AF can be readily shown, the velocity of a compression shook Is
larger than the velocity of a Mach wave Ya the material. This means,
that the flow field in advence of the compression shock remains
unaffected by this and can be computed.independent of it. It will be
assumed to be knom what follows. For the field behind the shock,
a compression shock of the first type represents on the one hand the
start of life lines and Mach waves 2, on the other hand the terminal.
of Mach waves 1. It follows, from this, that the flow behtid the
shock end the shock itself are mutually,related and can only be
computed together, This is the reason, therefore, that the computation
of the compression shocks becomes, essentially, more complicated
than the computation of other parts of the flow.

Next will be shown howexwnples cenbe conceived of flow fields
with comyressiun,Bhocks. If in the yt-diagrem (figs. 14(a) and 14(b),
the flow field in frcnt of the compression shocks end the yortion Cll
of the life line of the compression shock Is given, then the phases
behind,the shock are also deternd.ned.From the slopo of the lifa

.

M
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line the propagaticm velocity of the ccrnpreseionshock is given,
namely for each point of CD. Beside, the phases in front of the
chock can be learned for the Toints of CD; with this the phases
behind tho shock are calculable. From the phases behind the shock,
a portion of the flow field behind the shock, namely the region CIEl)
(fig. 14(a)) may be compnted, or if the entropy is known for the life
lines at the lower end of C!. The region CFD (fig. 14(b)) as well.
It is necessary to go forward along the life lines sndMach waves 2,
backwards along Mach waves 1. Imagine in figure 14(a) that the
compu%ed life line CE is realized through the motion of a piston,
then there is a flow in which a compression shock ap~ears end which
satisfies a boundary condition (if not prescribed, ho). In
figure 14(b) it is necessary to imagine snot.h~rflow field &djoine&
continuously at the lower end of Cl?;here the compression shock
end the flov determined by it satisfy the condition that it is
compatible along +Ae M~ch wave CF with another flow.

Frow these flow fields th9 following is recognized.; tie
compression shock through the portion GE of the life line of the
piston or Cl? of the Mach wave is defined as far as it ie reached
by Mach waves of its type (here the first, therefore). A change of
the life line of the piston outside of CE or the Mach waves
outside of CF propagates along Mach wave 1 in the yt-diagrsm, to
be ex~ct, and neglecting caees in which a second compression shock
srises, attains the compression shock at the upper end of D,
certainly. On the other hand a change brought about between C
end E or betwetin C and F in the boundary or junction
conditions takes effect at that position an the compression shock
where the Mach we.ve1 concerned reaches ii, that is, the portion CD
is certainly changed.

If the life line of the piston is lmown beycmd E to G or
the Mach wave beyond F to H, then a further portion of the flow
field is thereby datemined, without the necessi@’ for knowing the
continuation of the compression shock beyond D; it concerns the
regions C=JD or CFHBD.

It will nowbe shown how to precede fundamentally to ccmpulm
a compression shock for specified boundary or junction condititms.
As a cmcrete example assume the compression shock to be produced
by apieton which experiences a sufidenjmnp in velocity. (See fig~ 15D)
The starting point of tie compression shock is that point of the
life line of the piston at which tie velocity jump appears. The
phase immediately behind M cm be ascertained inmed.iatelyby the
method aDplied to the example of the last section. me compression
shock - as in previous examples of Mach waves - is ccquted jn
individual secticms, which are so small that the phase quantities -
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them may be regarded as varying hearly. AB $ust cmricd Out~.
phases behind the compression shock are calculable, if the

velocity of the shock is lmown. The vGlocity at M is lmown.
.Alongthe portion of the compression shock to bo computed, M, N,
the Phase change and, with i+,,the chenge in propagation velocity
of The cowpreesion shock, too, ,p,reregaraed as linear ● ACcordtigly,
for all possible shocks which satisfy the tiansltian conditions,

.

the ~oriihn M, N? of the compression shock depends only on a
single yaraneter, the velocity change betwcmn M and N, to be
exact. As a result of compu+ing the field behind the compassion
shock for various values of this parameter, by interpolation, that
shock my be ascertained which is consistmt with the specified
piston move~ent. At best, for this N is permitted to travel on a
fixed life line in the field In edvance @ the shock. Let C be
the yoint ~ tie life line for which the Mach wave 1 passing
through N proceeds. Now the regicm OPw may be computed in a
familiar manner. For the determination of the extension of the
compression shock NR the phase behind the compression shock at
the point N may be regarded as given everywhere alcmg the entire
Mach wave NQ. On the other hand, that value of velocity changes .
between N and R has to bu deterdned by interpolation,which
relates to a flow field that continuously ,Ioinsthe known field
along NQ.

With these two types, n~mdy the computation of a compression
shock going out frcnna piston or wall ~d the computation of a
compression shock continulnc into or arising in the interior of the
flow, the most important problems have been mastwred that can appear
here. The Interpolationmethods described becoma pretty tedious;
instead of them, itaraticm methods will le used, which actually Ioed
to tho goal more quickly. The interpolatbn method was mentioned
prtivfou&, however, since it affords better tns~~t into
relaticm.

16. EX.AMPLW3OF THE COMPUTATION OF CO~MPRESSICN~OCKS

FLOW FIELD

the basic

IN THE

Exmples will be given of how the problems fonnu~at.edIn the
Treceding section cam bs solved by means of iteration methods. Let
the flow be that camput.edin figure 10 and table IV. As the start
of the nev portion of the compression shock to be computed, point 1
is chosen in eVery case, accordingly it is idontifled with the
point M (fig. 15) once and with the point N a second time. The
new portion of the compression shock to be computed that corresponti.
to MN or NR, accordingly, is asswued to end h the ltie line 8, 9
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of figure 10. The phaseq in front of
obtained as a result of interpolation
calculations it is necemwn-y, on “that

49

the shock for ~ or R are
along this line. For these
account. to have the know-

ledge of the flow field in f&nb of’the chock”at the yoints 1
(M or N) end 8 ad 9. In table VT which has the same arran@ment
as table IV these velues have been recorded. While It sufficed to
kno~~ ~ fOr the constru~ti~ of tie flow field, here fi itse~

&qr
must be lm.own. These quantities for points I, 8, and 9 are located
in COI~ 26. In the desl~ations, in these examples, the only I
deviation frcm figure 15 is that only points on the compression
shock are cheractirized by letters. Numbers are used for points of
the flow field, correspondtig to previous use.

We begin witi the more elementary problem of continuing a
compression shock in the interior of the flow. For thi~ the phase
behind the shock at the point N end the phases along the Mach
wave N1l,10 (fig. 16(a)) may be considered known. The phases

at ‘II
and at petit 10 a~ear in table VI, yhases 3n between are

found hy linear interpol.atlon;moreover, for ‘II
the ‘velocityof

the compression shock and x have been given. (CO1=S 25 and.26).

Besides W for the life lines lying below N may be viewed as
al)

computedc It was entered for point 10 in tie correspondtig column.
H the distances between points on the compression shock are not

chosen too lerge, it is sufficient to regard --- between them as*

as constant. B the following this has happened throughout. Since

‘II
and 10 lie cm a Mach wave, the consistency condition must

naturally be satisfied.

Tn c~ec tion ~th -:~eflow calctiation the exiating data are
to be taken from th6 preceding calculation steps. The real
co’nputation begins with the f’ect that the difference in $ frcm
its value at t,hestarting point of the portion of tih CompreseiOn
shock to be computed (N here) is ascertained for the life klne
up to vhich the compression shock is to ba computed (8, 9 here).
This com~utathn is carried through along the curve of the initial
values in figure 10, the life line 8, 9 used hare passes through
point 7 there. By (37)
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By (23) end (4Xi) ,

Just es for figure 10, F has the for.
. .

# F = Foy2t

For point 7 .

Y = 1.450; aot = 1.18o; L = 0.66; ~ = -0.16; n = n = 0.849
.

78

For N the corresponding values appear in table VI. With this the
following is obtained:

()id = 2.680;
F. PO

7

()Fp—— = 2 .170;
F. O.

-N
()FP~F: < a.

= 0.930

#N

.

A@ = 2.427 x O .075 -I-1.020 x O.0~ = 0.2122
7,N

:

.

.

,
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In fQure 10 ~ had already been gi”i~~ i; must be the Beme &s
d$

+~a~.founflfrom tie qu~tities jmt computed. In fact

This is the average value of ~ as can be gathered for the
q

siretch 1.7 from the auxiliary diagram in figure LO. After these
~gPmations, tie ac~al i~~~ati~ methOd i~ reached. TO begin

with, the phases at the Totits R1l and 11 are esttited, in

that 11 is the intersection petit of the Mach wave 1 leading
backwrds from R with the given Mach wave N,10. Since no better
referance potnt exists for the estimate, these phases ere equated
to the phase at N1l. Moreover, etill another estimate is needsd

for ~ behin~ the shock; for this, the same value that prevails
d$

at the lower end of N is chosen. With these asmnptions, the
figure N, R, 11 may be drawn in f@ure 16(a). Starting with the
life ltne of the compression shock KR, whose direction here is
the same as the direction of the compression shock at I? (table VT),
R is obtatied as the ln~ersection point with tilelife line 8, 9.
Then the Mach ?.ave R,ll is drawn in proceedin~ from R badmmmie.
The direction of this Mach wave W8S taken fn the familiar msnner
fron a kp-~agra~ (not given here). From this figure the position
of R in ad.vsnceof the shock Is learned ky titwpolatim almg
N,1O the phase a+ 11. (See table VI.) From this may be obtained
the values enter@ furti.eron in the respective lines which are
necessary for later ccmpu.+ation. P>wceeding f,rom km by means

of the consistency conditions: the qumtity ~11 iS computed for

properties of the compressicm shock we tien fr~ ~a shock
diegr= 12(b). The following computations are essential to this

Ax A -k = 0.934
RII,I = RII RI

/( )+=&RII,I %Ijao = oa95k/I..o4o = 0:918

“.
,,’
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From the shock diagram
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From this it is computed that

Au
= 0.830; ~ = 1.360

0

= -0.090; u /a ‘~R1/ao+,A~/ao =1.661‘RII Ro

“Aportion of these results are givcm in table VI (columns 24 to26).
Moreover

&r= ‘RIT ‘%11—- = 0.830 - 0.781 =om230
q A$ 0.2122

R,N

TO improve these values, let a second iteration steP be c~fed”Out”
First, the figure N,R,I1 has to be dram again for tho values
just obbain~d. The average direction of the compression shock is

Thsn RI and 11 are obtained by interpolation,~11 from the

consistency condition for the Mach wave ll,R1l.

To find the characteristics of the shock, it is necessary to
carry out tie following computation

Ax = 1.456 - 0.493 =0.963; & =o&7
RII,I

From tha shock diagrem
Au

&- = o .0130;
/

= 0.980; —= 1.310
‘iRII‘RI

%:

.

.

.

Mom this is ob%ined

= -O.(XY7; m
d

= o.828j u a = l*657j ~ = OW220

‘R,T~ RII RI o w
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An additional iteration step is not necessary any more . Ih th3

second exemple (fig. 16(b}) tie cmyression shock is produced hy
the sudden velocity change of a ylstcm. The point of the yt-diagran
at which this velocity jum~ takes place - let it be designated M
in agreement with figure 15 - is to coincide with petit 1 of
figure 10. From the point M the piston has the velocity corre-
sponding to the life line in.the field in frcmt of the shock, in
particular the velocity at M in front of the velocity ,@p is
0.425ao. At M the velocity chsnges, suddenly, to the value

‘M..
= 0.925a. and rfses until the instant aot = 1.3 to the .

A.L

nagnitude O .97tao. “This end the flow field as det&rmined ly the

initial conditions end.the piston motim un to the point M is given.
Next the phase lehind the shock at the point M is computed.

q~- - ~-) = 0.483
2

As a result of this line in the shock diagram 12(b) intersecting
the shock cwve, the following is obtained

ii = 0.986; m- = 0.020

/
● .AUM

‘iM,~ ‘i~ = 0“977, _= 1.333
am

From this

‘M,11
= 1.620; PM,II = -0,229

= 0.781; %
‘iM,II

—= 1.805 .
a
o



The nhase at ~1 is known”with that.’ (table VI.) Now the

difference must be commuted, over again, from the llfe line of
the pi~~n for the l~e.,line up to which it is desired ~W COmpUte
the coqm~ssion shock. “It IS desired to allow.the compression
shock to end at the life line 8, 9, here too and take the phases
in 8 and 9 (table TT.}frcm the”preceding &csmple’and

The computation of the compression shock milms use of figure M,S,
N, 11. (She fig. 16(b)). M, S, N is the life lin~ of the compression
shock; N, 11 is the Mach wave 1 returning from N; llZ S is the
Mach wav& 2 returning from 11. To begin, an est-~e.teof the phase
at the points N1l, 11 and S

.s1.
is m~d; aud this is chosen equal

eve~ywhere to the phase at Ta addition, an esti~te for &
‘II ‘ Tti

is necessary. Let dn = 0.230 as a start. Figure M, N, 11, S ‘
z

may be drawn with these assumed values- The order in which the
poj.ntswere named ccmesponde to the order in which they came up
In the drawing. For the positions of N and 11 obtained therely
the phase in front of the shock (see table VI) or the velocity of
the life line is obtained by interpolatim. The itmation method
begins at point U and it can Ye shown that VII can be only

slightly different from pS becemso the lj.neelement S1l,ll is

small relative to the otherrL mensions. The quantity PS CSJl
11

~ffer from UM1l only sli@tly, since it originates In linear

Interpolationletween M emd N, and N lies very close to M.
Therefore pll = UM ~1 is chosen as a starting yoint. If the

vel.ocit.yof the pis& at .11 that iS know from the ~o~dary
conditions is used for this XII may be computidc From tie

consistency condition for the Mach wave ll,N ‘NII is obtained.

Now the followtig computation

and from the

‘%=

shock diagram .
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fron this

= -o .077; = o .827; k = 1.678wL?,11 lTII,. a.

l?uyther it is ca3.cul.atedthat

dfi— . 0.217
(iIj

The phase at S is obtilned by titerpolation between M and N ●

With the aid of the consistency condition for tie Mach wave S,11,M~

iS $inclly obtainea, ml Xll from the boundary condAticm for

.

point 11. The’first iteratiau step ends with that. It is necessary
to check ~rhetherthe quanti.tfes k~> W1lS ~~> %13 %11~

‘d ~ computed agree sufficiently with the original esthmtes.

To increase the accuracy a second iteration atip might be
carried oUt. ChIthe basis of tie Vah3S j~t COiiUtGd, the fiwe
is redesigned and the computation is carried out in the manner jw,t
described.. The valuL3for Wll just,comruted is takan as a beginntig.

The following calculation is obtainea for the determination of the
characteristics of the shock

AA = 1.003; AI-’ = 0.967
NII,I

llkm the shock diagram

from this

%11
s -o.083; ~ = 0.828; ~ = I-.678; $ = 0.221

‘o

The computatim is cont5nned in the manner given until the yhase
at point 11 is obtained, again. An additional iteration step is
not nec~ssary.
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17* SUMMARY

The differential equation system for nonstationary, one-
dfmensional flows possesses three families of characteristics; the
t,he~oiiynamicand the flow phase are described by three variables.
As a result of setting up consistency conditions for the charac-
%ristics passing through the pcint for which the conditions have
been set up, three equations are obtained from which the phase
may be obtained. Tn that a possiltlity for the computation of the
flow has been given fundamentally.’ The report carries out these
Ideas, in gener&l, and brings the simplificationswhich are possible
under special assumptions, as well a~ detailed examples. Compression
shocks appear.,in this, as transitional conditiorm m the titerior
of the flow and sre,likewise investigated h detail.

Trsnslatedby Dave Feingold
Naticnml.Advisory Committee
for Aeronautics .—

m
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